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and experimental virus populations: two case studies
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We here propose an analysis pipeline for inferring the distribution of fitness effects (DFE) from either patient-sampled or
experimentally-evolved viral populations, that explicitly accounts for non-Wright-Fisher and non-equilibrium population dynamics
inherent to pathogens. We examine the performance of this approach via extensive power and performance analyses, and
highlight two illustrative applications - one from an experimentally-passaged RNA virus, and the other from a clinically-sampled
DNA virus. Finally, we discuss how such DFE inference may shed light on major research questions in virus evolution, ranging from a
quantification of the population genetic processes governing genome size, to the role of Hill-Robertson interference in dictating
adaptive outcomes, to the potential design of novel therapeutic approaches to eradicate within-patient viral populations via
induced mutational meltdown.
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INTRODUCTION
Characterizing the underlying demographic histories and selective
pressures shaping the evolutionary trajectories of both extant and
extinct species is a focal point of population genetics. When the
organism in question is a virus, this demographic history will
include the infection (and, when applicable, compartmentaliza-
tion) dynamics of within-host populations (Jensen 2021). With
regards to selection, a major focus of the human pathogen
literature is on positive selection, be it identifying mutations
conferring drug resistance or underlying immune-evasion (see
review of Irwin et al. 2016a). However, despite receiving less
attention in this literature, it is well-understood that regardless of
the organism in question, most new fitness-impacting mutations
have deleterious effects (e.g., Crow 1993; Lynch et al. 1999; Bank
et al. 2014b; and see reviews of Eyre-Walker and Keightley 2007;
Bank et al. 2014a). The removal of these deleterious mutations via
purifying selection is expected to reduce the effective population
size to an extent largely dictated both by recombination rates and
the strength of selection (Charlesworth et al. 1993; Charlesworth
2013; and see review of Charlesworth and Jensen 2021).
Furthermore, linkage to this abundant input of deleterious
mutations may impact the fixation probabilities of alleles at other
genomic sites, including reducing the likelihood of adaptive
fixations (Hill and Robertson 1966; Pénisson et al. 2017).
Yet, in order to quantify how deleterious mutations impact the

evolutionary trajectory of a population, it is necessary to under-
stand the shape of the distribution of fitness effects (DFE) of new
mutations entering the population (i.e., the selective effects
characterizing newly arising mutants). Herein lies a challenge, as
the accurate estimation of the DFE is a difficult task. There are
three general approaches for such inference. The most direct is
achieved via site-directed mutagenesis - measuring the fitness

effect, one at a time or in combination, of an artificially created
mutation(s) on an otherwise wildtype background under set
environmental conditions (e.g., Fowler et al. 2010; Hietpas et al.
2011, 2012; Bank et al. 2014b). As this method is experimentally
demanding, the DFE can generally only be obtained for a highly
localized genomic region, and the approach is only feasible in
certain experimentally tractable organisms. In order to character-
ize genome-wide effects, mutation accumulation (MA) studies are
also used to experimentally infer the DFE. By allowing mutations
to accumulate over time - generally under minimal selection - the
fitness of the resulting lines can be compared allowing for
inference of underlying selective effects (e.g., Lynch et al. 2016;
Long et al. 2018). As opposed to the directed-mutagenesis
approach, MA lines may obtain poor inference of the most
strongly deleterious classes of mutations, as they would not be
expected to segregate in the population. Relatedly, by directly
tracking individual allele frequencies over time in these experi-
mental lines, selective effects may be inferred based on observed
per-generation allele frequency changes; namely, by first deter-
mining if the extent of change is consistent with genetic drift
alone, and, if not, fitting a selection coefficient to match the
degree of change (e.g., Foll et al. 2014; Ferrer-Admetlla et al. 2016).
While these experimental approaches have provided major

insights into the general shape of the DFE, they are naturally
restricted to laboratory settings. As such, a final class of methods
has been developed to estimate the DFE from natural population
polymorphism data - both for common single time-point (e.g.,
Keightley and Eyre-Walker 2007; Schneider et al. 2011; Tataru et al.
2017) as well as for time-sampled data (e.g., Malaspinas et al. 2012;
Mathieson and McVean 2013; Acevedo et al. 2014; Foll et al. 2015;
Sohail et al. 2021). The earliest class of approach relies on
synonymous sites in coding regions to estimate the demographic
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effects, and conditional on that inferred history, a DFE is fit to the
observed data from non-synonymous sites. As such, these
methods rely on the neutrality of the former, which has been
called into question in many organisms (e.g., Chamary and Hurst
2005; Zeng and Charlesworth 2010; Lawrie et al. 2013; Choi and
Aquadro 2016; Jackson et al. 2017), including in viruses (e.g.,
Canale et al. 2018). Equally importantly, these methods neglect
the fact that levels and patterns of variation at synonymous sites
may be shaped by their linkage to directly selected non-
synonymous sites - this neglect of these background selection
effects may result in serious mis-inference of the demographic
history (Zeng 2013; Ewing and Jensen 2016). In order to account
for these factors, more recent methods have been developed to
jointly infer the demographic history simultaneously with the
underlying DFE, without making assumptions about the selective
effects of any particular class of sites. For example, the
approximate Bayesian (ABC) approach recently proposed by Johri
et al. (2020) was shown to obtain accurate DFE inference using
single time-point datasets, while uniquely accounting for the
effects of background selection and the potential non-neutrality of
synonymous sites (and see Johri et al. 2021). Importantly,
background selection expectations are themselves incorporated

into the inference procedure; as such, the full DFE of newly arising
mutations is estimated, even if, for example, the strongly
deleterious mutations comprising the most deleterious class are
not themselves sampled as polymorphic sites.
With such estimators now at hand - which have previously only

been applied to model organisms (e.g., Drosophila melanogaster) -
we here examine the utility of these DFE inference procedures for
the study of viruses. In order to do so, we have modified the
framework of Johri et al. (2020) to account for the violation of
common Wright-Fisher assumptions inherent to viruses - namely,
highly skewed progeny distributions (Irwin et al. 2016b; Matus-
zewski et al. 2018; Sackman et al. 2019; and see Vahey and
Fletcher 2019). Owing both to the reduction in effective
population size (increasing the effects of genetic drift / decreasing
the efficacy of selection) as well as changing expectations in the
shape of the site frequency spectrum, such progeny skew is
known to result in potential mis-inference of both the DFE and
demography. For the sake of illustration, Fig. 1 presents the results
of a commonly used estimator of the DFE together with
population size change (DFE-alpha; Keightley and Eyre-Walker
2007) - an approach designed neither to account for background
selection effects nor skewed progeny distributions - when applied

Fig. 1 Effects of progeny-skew and background selection on the inference of demography and the DFE, using the DFE-alpha approach
(Keightley and Eyre-Walker 2007). The left panels show the inference of the DFE while the right panels show the inference of fold-change in
population size. Inference is shown when 30% of new mutations are neutral, and the remainder are: (A) weakly deleterious, (B) moderately
deleterious, and (C) strongly deleterious. Estimates are shown only for the selected classes. Black bars depict true values, gray bars show
inference in the absence of progeny skew (thus no violation of the assumption), and the blue bars correspond to populations with levels of
progeny skew characterized by ψ= 0.075 (light blue) and ψ= 0.15 (dark blue).
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to populations characterized by differing levels of progeny skew.
As shown, in the absence of a violation of progeny distribution
assumptions, DFE inference is correct, but the inference of
population size is incorrect. Namely, and consistent with previous
results, population growth is inferred for these constant-sized
populations, owing to the left-skewed frequency spectra being
generated by the unaccounted for background selection effects
(Ewing and Jensen 2016; Johri et al. 2021). With the addition of
progeny skew, DFE inference also becomes incorrect for the
weakly and moderately deleterious classes, with a bias towards
under-estimation owing to the increased effects of genetic drift
under these models. For the strongly deleterious class, inference
remains largely accurate, as purifying selection is sufficiently
strong relative to genetic drift.
To provide examples of how DFE inference may be more

accurately performed in organisms characterized by progeny skew -
as well as to highlight the generality of the approach - we present
estimates, together with the necessary power analyses, for two
viruses of critical public health concern: a patient-sampled DNA virus
(human cytomegalovirus (HCMV)), and an experimentally-passaged
RNA virus (influenza A virus (IAV)). Finally, we discuss how inferred
DFEs may be utilized to generate appropriate null expectations,
against which patterns of positive selection (e.g., resistance
evolution) may be better characterized, as well as how these
estimates may be leveraged in the design of novel therapeutics.

METHODS
Data
Influenza A virus (IAV). Published control line data was taken from
Renzette et al. (2014) and Foll et al. (2014). In brief, viruses were serially
passaged in MDCK cells, with a multiplicity of infection (MOI) of 0.01 for the
initial infection. Viral titers were determined by plaque assay per passage in
order to maintain a constant MOI. Here we analyzed 13 passages in total in
which high-throughput Illumina sequencing was performed. For each
control replicate analyzed, we down-sampled all sites to a coverage of
1000 for the calculation of per-site allele frequencies, only bi-allelic SNPs
were retained, and only SNPs >2% frequency were considered in order to
eliminate false-inference owing to sequencing errors. For the PB2 segment
chosen, a mean of 518 SNPs was observed across control line replicates,
with a minimum of 48 and maximum of 980 SNPs after filtering.

Human cytomegalovirus (HCMV). Published patient data (patient_B103)
was taken from Renzette et al. (2013). In brief, serial specimens were
collected from HCMV-infected patients at the University of Minnesota
Medical Center or the University of Massachusetts Memorial Health Center,
amplification was performed and quantified, and whole genomes were
sequenced on Illumina technology. For this study, we chose the urine
sample collected at 6-months post-birth from a congenitally infected
infant. We aligned the sequence reads from the sample to the Merlin strain
reference genome (Ref Seq ID: NC_006273). Whole-genome alignments
were generated using the Burrows Wheeler Aligner v.0.7.17 mem
algorithm (Li and Durbin 2009). Reads were sorted using SAMtools v.1.9
(Li et al. 2009), and duplicates were marked using sambamba v. 0.7.1
(Tarasov et al. 2015). Based on the genomic scan of Renzette et al. (2013),

we chose a genomic region with little evidence of positive selection.
Namely, we considered nucleotide positions 62,500–86,000 (23,500
nucleotides length) representing a 10th portion of the total genome size.
We used Freebayes v.1.3.2-dirty (Garrison and Marth 2012) for variant

calling. SNP calls were only made if the mapping quality of the read was
≥30 and the Phred score for base quality ≥20. Further, we required that
each SNP was supported with no fewer than one read for each sequencing
direction. We discarded SNPs for which we detected evidence for strand
bias in the supporting reads, down-sampled all sites to 100 in order to
estimate allele frequencies from allele counts, and only SNPs with
frequencies ≥2% were considered. This filtering resulted in 449 SNPs for
the region analyzed.

Simulations. We conducted forward-in-time simulations using the SLIM
version 3 software package (Haller and Messer 2019). DFE estimation was
based on Johri et al. (2020), with an extension to account for skewed
progeny distributions. Functional genomic elements of 2314 bp and
23500 bp, for IAV and HCMV respectively, were simulated under a variety
of discrete DFEs comprising four fixed bins representing effectively neutral
(0≤|2Nes|<1; referred to as f0), weakly deleterious (1≤|2Nes|<10; referred to
as f1), moderately deleterious (10≤|2Nes|<100; referred to as f2) and
strongly deleterious/lethal mutations (100≤|2Nes|≤2Ne; referred to as f3). Ne

was assumed to be 176 for the experimentally passaged IAV data as
previously estimated by Foll et al. (2014), based on time-sampled neutral
allele frequency change. For HCMV, we used the inferred size of 104

haploid individuals for the purpose of scaling selection coefficients
(Renzette et al. 2013). Selection coefficients were sampled uniformly
within each bin of the DFE, and the shape of the DFE was proportionally
varied by each class of mutation (f0, f1, f2, f3), such that Σi fi= 1. In order to
perform ABC, fi were sampled uniformly such that f0∈ [0, 1], f1∈ [0, 1− f0]
and f2 ∈ [0, 1− f0− f1].

IAV simulations: We simulated a population that grew from a single
virion to N= 1 × 106 and then experienced twelve population bottlenecks
that varied in intensity, corresponding to the experimental passaging as
described in Table 1 of Foll et al. (2014). After each bottleneck, the
population grew exponentially, reaching a size of 106 in 13 generations.
Given that this was an experimental population, these demographic details
are well-characterized. In total, the full 183 generations of the experiment
were simulated (Fig. 2A). A constant progeny skew value of (ψ)= 6.7% every
generation was imposed, as previously estimated by Sackman et al. (2019).
As previous experiments measured the neutral mutation rate (e.g.,

Sanjuán et al. 2010), rather than the total mutation rate (that is, including
the range of newly arising deleterious mutations), we first simulated 200
different parameter combinations of f0, f1, f2, and f3, for mutation rates of
1 × 10−5, 1 × 10−4 and 1 × 10−3. As 1 × 10−3 was most consistent with the
observed statistics, this total rate was fixed for subsequent analysis
(Supplementary Table 1). Drawing from these prior distributions, 500
points (i.e., parameter combinations) were sampled. For each parameter
combination, we conducted 100 replicates in order to characterize both
the mean and variance of summary statistics. In order to match the
empirical data, 1000 individuals were sampled, and alleles >2% frequency
were considered in the simulated data.

HCMV simulations: Following an initial burn-in period of 10N genera-
tions, we considered a four-stage demographic model characterizing a single
patient infection, following Renzette et al. (2013) and Pokalyuk et al. (2017):
(1) a neutral equilibrium ancestral population of size N, (2) an initial infection

Fig. 2 Graphical representation of the demographic models of IAV and HCMV. A IAV: in which the population size changes correspond to
the experimental passaging. B HCMV: in which the size changes correspond to the initial infection and subsequent compartmentalization.
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bottleneck (B1) from the mother to the plasma of the fetus, leading to an
instantaneous population reduction to size N2, (3) a subsequent population
size recovery to size N and, (4) a final bottleneck (B2) representing infection
from the plasma into the urine compartment, leading to a second reduction
to size N3, followed by population size recovery to the initial N (Fig. 2B). As
previously inferred, N= 1 × 104, N2= 433, and N3= 100. A recombination
rate of 1 × 10−7/site/generation (Renzette et al. 2015) and ψ= 6.7% (Sackman
et al. 2019) were assumed. Based on the previous estimate of the neutral
mutation rate from segregating variation of 2 × 10−7/site/generation
(Renzette et al. 2015), simulations were conducted spanning total mutation
rates of 1 × 10−7, 1 × 10−6, and 1 × 10−5/site/ generation, in order to infer the
total rate that matched the observed data (Supplementary Table 2). Using
the best matching 1 × 10−5, 500 replicates were simulated for each DFE draw.
In order to mirror the empirical data, 100 individuals were sampled, and
alleles >2% frequency were considered for downstream power and
performance analyses. Importantly, by simulating data that matches the
empirical sampling, we can directly account for the differences in inference
power attained in the down-sampled read-depth of 100 in HCMV, relative to
that of 1000 in IAV.

DFE-alpha, and an evaluation of the effects of unaccounted for
background selection and progeny skew: Inference was performed
using DFE-alpha 2.16 (Keightley and Eyre-Walker 2007) using the folded
and pooled site frequency spectrum (SFS). Under this approach, the SFS of
segregating neutral mutations was used to infer the demographic history
(2-epoch size change), and the SFS at directly selected sites was used to
infer the DFE conditional on that inferred history. For the first step, both
the current population size and the time of change (with an initial value of
50 generations) were allowed to vary. When inferring the DFE, the initial
value of mean s and β were assumed to be −0.1 and 0.5 respectively,
where s is the selection coefficient and β is the shape parameter of the
assumed gamma distribution of s. The inferred DFE was scaled with
respect to the current population size (N2 in DFE-alpha).
The approach was evaluated by simulating N= 10,000 diploid

individuals in SLiM 3.1 (Haller and Messer 2019) under constant population
size, with mutation rate= 1 × 10−5 per site/generation and the recombina-
tion rate= 1 × 10−8 per site/generation. A 10 kb region was simulated with
30% of all mutations being neutral (i.e., s= 0), and the remainder of the
sites experiencing three different deleterious DFEs: (a) a uniform
distribution between 1 ≤ Ns < 10 (weakly deleterious); (b) a uniform
distribution between 10 ≤ Ns < 100 (moderately deleterious); and (c) a
uniform distribution between 100 ≤ Ns < N (strongly deleterious). Simula-
tions were run for 10N generations and 50 diploid individuals were
sampled with 10 replicates for each evolutionary scenario. In order to test
the effect of progeny-skew on DFE inference, populations with ψ= 0.075
and ψ= 0.15 were also simulated.

Calculation of summary statistics and ABC
For the entire genomic elements simulated, the mean and variance of the
following statistics were calculated: number of segregating sites (S),
nucleotide site diversity (π), Watterson’s θ, Tajima’s D, and Fay and Wu’s H
(both absolute and normalized), using the Python package pylibseq 0.2.3
(Thornton 2003). While all summary statistics were used for inference in
IAV, HCMV inference was only based on a subset of statistics (S, π,
Watterson’s θ, Tajima’s D), owing to the lack of information needed to
unfold the SFS. ABC inference was performed using the “abc” package in R
(Csillery et al. 2012) When a large number of summary statistics are used, it
can be difficult to find sufficient number of simulations that match the
observed data and thus ABC methods suffer from the curse of
dimensionality. In order to deal with this issue, one can use larger
acceptance rates and then perform linear local adjustment to correct for
the discrepancy between the simulated and observed summary statistics
by weighting the accepted simulations accordingly. In the “abc” package,
this discrepancy can be accounted for by using ridge regression (that
assumes a linear relationship between the parameters and statistics) or by
using neural nets (that can account for non-linear relationships between
the parameters and statistics) which can also reduce the dimensionality,
and thus deal with multicollinearity (i.e., highly correlated statistics). Neural
net was used to perform inference in IAV, owing to superior performance
over ridge regression in this parameter space. Conversely, for the HCMV
parameter space, ridge regression performed better (e.g., absolute error in
performance of ABC using ridge regression vs neural net was 0.137 vs 0.157
for f0; 0.155 vs 0.176 for f1; 0.047 vs 0.044 for f2; and 0.031 vs 0.026 for f3
respectively). A 50-fold cross-validation procedure was employed to

choose the appropriate tolerance levels, such that 1 randomly chosen
simulation was excluded and its parameters were inferred using
n−1 simulations, where n is the total number of simulations. A tolerance
of 0.05, and weighted medians of the posterior distribution, were used to
determine point estimates of the inferred parameters.

RESULTS
The DFE of newly arising mutations was inferred from experi-
mental populations of a reassorting RNA virus (IAV), as well as
from a patient-population of a recombining DNA virus (HCMV).
The DFE was modeled as a discrete distribution with four fixed
bins - the effectively neutral, mildly deleterious, moderately
deleterious, and strongly deleterious classes of mutation (see
Methods). By varying the proportion of each class of mutations
referred to as f0, f1, f2, and f3, respectively, all possible DFE shapes
could be considered for their respective fit to the observed data.
In addition, the history of population size change, and progeny
skew, was directly and uniquely accounted for in this inference
scheme. As both of these neutral processes additionally act to
shape levels and patterns of variation, their frequent neglect in
such analyses has been shown to lead to a serious mis-inference
of the contribution of selection (e.g., Teshima et al. 2006; Thornton
and Jensen 2007; Mathew and Jensen 2015; Harris et al. 2018;
Sackman et al. 2019, and see Jensen et al. 2019).

Inference of the DFE in IAV
The genome of IAV is composed of eight segments (for a total
length of ~13 kb) that can be exchanged by reassortment (Palese
and Young 1982; Dadonaite et al. 2019). From an infected cell, IAV
progeny release occurs every ~6 h and previous estimates suggest
a mutation rate of 2.3 × 10−5 per site/cell infection cycle (Parvin
et al. 1986; Sanjuán et al. 2010; Abdoli et al. 2013). Though the IAV
population in question has a large census size (N), the effective
population size (Ne) has been inferred to be only on the order of
103 (Foll et al. 2014, 2015; and see Poon et al. 2016) - a disparity
that likely owes to a combination of factors including strong
purifying and positive selection, severe bottlenecks, as well as
progeny skew. This observation is consistent with the general
notion that Ne is much more strongly constrained than N across
organisms, suggesting an upper-bound to the efficacy of natural
selection (Lynch 2007; Lynch and Trickovic 2020).
In order to directly compare results with the time-sampled

approaches of Foll et al. (2014) and Ferrer-Admetlla et al. (2016),
we utilized the same experimentally passaged dataset (see
Methods). As we here focused on characterizing the neutral and
deleterious DFE distribution, we sought to minimize the effects of
positive selection. As such, we used the control lines from each
experiment (that is, passaged in the absence of drug treatment),
as well as the PB2 segment (2,314nt in length) as scant evidence
of positive selection has been observed in this region (Renzette
et al. 2014; Foll et al. 2014). Given that the populations under
consideration in IAV were of oscillating size owing to experimental
passaging (Fig. 2A), it was first necessary to assess the
performance of the statistical inference scheme under this rather
unique demographic history. Helpfully, the census population
sizes at each passage are known experimentally, allowing many
aspects of this model to be fixed when performing inference.
In addition, the degree of progeny skew (ψ) has been previously

inferred to be ~7% (Sackman et al. 2019), and was here treated as
a fixed parameter. This skew is expected to result in an excess of
both rare as well as high-frequency alleles relative to the standard
Wright-Fisher expectation, resulting in a U-shaped frequency
spectrum (Eldon and Wakeley 2006; Eldon et al. 2015; Blath et al.
2016; Matuszewski et al. 2018). As purifying selection is also
expected to result in a higher proportion of rare alleles, inferring
an accurate DFE could therefore be challenging under this model.
However, this combination of summary statistics was found to
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enable reasonably accurate inference of all four parameters of the
DFE (f0, f1, f2, and f3; Fig. 3A). Moderately and strongly deleterious
mutations were estimated with the highest accuracy with mean
absolute errors of 0.037 and 0.028, respectively, while the
proportion of mildly deleterious and neutral mutations were
associated with the largest variance (absolute errors of 0.107 and
0.093, respectively).
With this statistical performance quantified under the appro-

priate demographic model, we evaluated the experimental data.
Thirteen experimental replicate lines were used to obtain means
and standard deviations of all statistics utilized in the ABC method.
In order to first fit an accurate total mutation rate (that is,
including strongly deleterious mutations not observed in MA lines,
and not expected to have contributed to divergence as measured
by phylogenetic estimates), we simulated a range of mutation

rates. We found the that the summary statistics obtained from
simulations on the order of 10−3 per site/generation to be highly
consistent with the observed data (see Supplementary Table 1).
Using this inferred mutation rate, the estimated DFE is

characterized by a strong skew towards the neutral class of
mutations, with f0= 0.78, f1= 0.16, f2 ~ 0, and f3= 0.06 (Fig. 3B).
These estimates are similar to the DFE inferred using an alternative
Markov model-based approach (Ferrer-Admetlla et al. 2016), and
the general bi-modal shape of the DFE is also consistent with the
mutational effects estimated by Visher et al. (2016) using genome-
wide data. Though it may at first seem peculiar that more than
90% of mutations are inferred to be neutral or weakly deleterious,
and that only ~6% of mutations are strongly deleterious, it is
worth reiterating that this analysis is based on control lines
without any selective challenge. Further, the segment analyzed

Fig. 3 Inference of the DFE in the IAV population. A Power and performance analyses concerning the inference of the DFE in an oscillating
population size model mirroring that of the experimental IAV populations in question. The black diagonal lines represent the points at which
estimated parameters match their true values, where f0 is the proportion of new mutations in the neutral class, f1 is the proportion of the
weakly deleterious class, f2 is the proportion of the moderately deleterious class, and f3 is proportion of the strongly deleterious/lethal class.
B Posterior estimates of the parameters of the DFE in an experimental population of IAV. Dashed lines indicate the distribution of sampled
priors, the histograms present the posterior distribution, and the red vertical lines show the point estimates calculated as the weighted
median.
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(PB2), which is thought to play a primary role in the genome
packing process (Muramoto et al. 2006), was chosen as it
appeared to be evolving in a relatively neutral manner. As such,
this inferred DFE likely reflects largely biophysical constraints on
potential amino acid changes (see Discussion). For example, the
whole-genome DFE inferred by Visher et al. (2016) referenced
above estimated greater density in the strongly deleterious class,
likely owing in part to the inclusion of more strongly constrained
segments across the genome, as well as their directed mutagen-
esis approach (as opposed to the mutation-accumulation data
considered here).

Inference of the DFE in HCMV
HCMV is a linear DNA virus with a genome size nearly 20x that of
IAV (~236 kb; Dolan et al. 2004). HCMV presents a high level of
genetic diversity relative to other DNA viruses (Renzette et al.
2011, 2015; and see Sackman et al. 2018; Jensen and Kowalik
2020), despite a slowly replicating process of ~24 h that includes
encoding a polymerase with proofreading capacity (Nishiyama
et al. 1983). Additionally, HCMV compartmentalizes within a host,
and diversifies strongly between compartments (Renzette et al.
2013). Furthermore, previous studies have suggested important
roles of both purifying and background selection, as well as
episodic positive selection, in shaping HCMV genetic diversity
(Renzette et al. 2016, 2017; Hage et al. 2017).
The genetic data available from HCMV represents a within-patient

population sample collected from the urine of a congenitally
infected infant (see Methods). The population has previously been
inferred to have experienced multiple bottlenecks - corresponding
to the initial infection and subsequent compartmentalization
(Renzette et al. 2011, 2013). As such, it was again necessary to
evaluate whether the DFE could be accurately inferred under such a
complex demographic history. The specific demographic history
(Fig. 2B) inferred by Renzette et al. (2011) was fixed for HCMV, while
the four parameters of the DFE were varied in order to perform
power and performance simulations within the ABC framework.
Under this demographic model, HCMV populations experience
extremely rapid recent growth post-infection, which is expected to
result in a strong excess of rare alleles, potentially mimicking the
effects of purifying selection. As observed in our cross-validation
(Fig. 4A), our estimate of the proportion of strongly (absolute error:
0.030) and moderately (absolute error: 0.047) deleterious mutations
is quite accurate, however the method performs less accurately
when distinguishing between neutral (absolute error: 0.138) and
mildly deleterious mutations (absolute error: 0.151), likely owing to
this conflation of processes contributing to rare alleles.
Turning to the empirical data, a total mutation rate of 1 × 10−5

provided a good match of the simulated summary statistics to the
observed data (Supplementary Table 2), and was thus fixed in
subsequent inference. We inferred the four parameters corre-
sponding to the DFE of new mutations in HCMV to be f0= 0.51,
f1= 0.24, f2= 0.12, and f3= 0.13 (Fig. 4B). It should be noted that
because our method has less accuracy under this demographic
model for estimating f0 and f1, the underlying posterior
distributions are fairly broad. However, inference confidently
suggests that ~70% of all new mutations are neutral or weakly
deleterious, with the remaining being moderately and strongly
deleterious.

DISCUSSION
We here provide an example of estimating the DFE from both
patient-sampled as well as passaged viral populations, using a
commonly studied RNA (IAV) and DNA (HCMV) virus for the
purposes of illustration. To do so, we suggest a modification of the
joint approximate Bayesian estimator of Johri et al. (2020) in order
to account for the non-Wright-Fisher replication dynamics of
viruses. It should be noted that there are currently no standard

methods for inferring the DFE for such populations; thus, although
our proposed method assumed a fixed measure of progeny skew,
it is nonetheless a first step towards incorporating such life history
traits of microbial organisms. As the inference of selection may be
strongly confounded by demography, we conducted performance
analyses under the strongly non-equilibrium experimental (IAV)
and infection (HCMV) histories known for these samples, thereby
quantifying uncertainty in the resulting DFE estimates. These two
examples indicate the broader applicability of this framework for
the study of pathogen evolution.
The DFE estimates provided by this analysis speak to a number

of points of evolutionary interest. Firstly, estimates suggest that
~90% of new mutations in the PB2 segment of the experimental
IAV population are neutral or weakly deleterious. This large
fraction probably partly owes to the fact that inference was
performed on control populations evolved in the absence of any
experimental challenge, and that the segment itself was chosen
for its lack of evidence of strongly selected sites in earlier studies.
As such, the fraction of strongly deleterious sites inferred likely
represents a biophysical/biochemical constraint on potential
amino acid changes (e.g., Shakhnovich 2006; Zeldovich et al.
2007). For comparison, in the patient population of HCMV - in
which the population is, at a minimum, exposed to immune
pressures - the fraction of neutral and weakly deleterious sites was
estimated at 70%, with nearly a third of all mutations in the
genomic region under study being inferred to experience strong
purifying selection. Accounting for this full DFE, as well as the
diversity-reducing effects of progeny skew, also suggests some-
what faster mutation rates than have been estimated using
phylogenetic approaches or MA lines - both of which will
disproportionately measure neutral mutation rates at the neglect
of strongly deleterious rates.
Secondly, inter-virus comparisons of this sort will allow for a

consideration of the effects, and evolution, of recombination and
mutation rates themselves. For example, as HCMV frequently
recombines (Renzette et al. 2016), while IAV rather reassorts
between segments, Hill-Robertson effects (Hill and Robertson
1966; and see Muller 1964; Felsenstein 1974) may be expected to
differ substantially between these two example viruses. Specifi-
cally, as recombination breaks up linkage effects allowing natural
selection to more efficiently purge deleterious variants, HCMV
might be expected to better tolerate a higher deleterious input (as
here inferred, and see Lynch et al. 1995; Charlesworth and
Charlesworth 1998).
Thirdly, these comparisons also allow for an examination of

genome size determinants, which itself tends to scale inversely
with mutation rate (e.g., Drake 1991; Lynch 2010; and see Gago
et al. 2009; Bradwell et al. 2013). In our examples, the per-site
mutation rate in the smaller IAV genome (~13 kb) is expected to
be larger than HCMV (~236 kb), as has long been known.
Specifically, given that selection acts on the genome-wide input
of deleterious variants (Kimura 1967), the smaller IAV genome
would be expected to survive a higher per-site input than the
larger HCMV genome. Notably, given the DFE and mutation rates
estimated here, as well as the genome sizes, the expected per-
replication deleterious mutational input of moderately and
strongly deleterious variants is roughly similar between the two
viruses (on the order of 1-2 deleterious mutations per genome/
replication). However, owing to multiple differences in polymerase
and proof-reading activity amongst viruses, accumulating larger
numbers of examples will be important in order to determine the
generality of this genome-wide input.
Finally, the underlying shape of the DFE has important clinical

implications as well. This particularly relates to the concept of
mutational meltdown (Lynch and Gabriel 1990; Gabriel et al.
1993; Lynch et al. 1993), the ability to induce it in viral
populations (e.g., Lynch et al. 1995; Bank et al. 2016; Jensen
et al. 2020), and the specific outcome of lethal mutagenesis (e.g.,
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Crotty et al. 2001; Bull et al. 2007; Wylie and Shakhnovich 2012;
and see review of Matuszewski et al. 2017). In short, high
mutation rates can overwhelm the ability of natural selection to
purge deleterious variants, even in large recombining popula-
tions, and this increasing deleterious load can result in a
snowball effect leading towards ultimate extinction. This transi-
tion to mutation-driven rather than genetic drift-driven melt-
down occurs when the deleterious mutation rate is ~1 per
individual per generation (Lynch et al. 1993) - similar to the
numbers for IAV and HCMV reported here. However, the shape of
the underlying DFE is critical in understanding the likelihood of
meltdown, the required therapeutic increase in mutation rates
necessary to induce it, and the expected time to within-host viral
extinction. Promisingly, and further supporting the result that IAV

and HCMV may reside near a mutational boundary - hence
making them particularly susceptible to therapeutic meltdown -
recent results have demonstrated that experimentally increasing
mutation rates in IAV using the mutation-inducing drug
favipiravir can indeed induce meltdown dynamics and ultimate
extinction (Baranovich et al. 2013; Bank et al. 2016; Ormond et al.
2017; Goldhill et al. 2018). Similar investigations have been
suggested, and are currently underway, as a novel treatment
strategy for SARS-CoV2 (Sheahan et al. 2020; Jensen and Lynch
2020; Santiago and Caballero 2020; Jensen et al. 2020). Future
characterizations of the DFE across viruses currently posing
critical public health threats, of the variety presented here, will
be essential for further exploring meltdown as a generally
applicable therapeutic.

Fig. 4 Inference of the DFE in the HCMV population. A Power and performance analyses concerning the inference of the DFE under an
infection scenario mirroring that previously inferred for the HCMV population in question. The black diagonal lines represent the points at
which estimated parameters match their true values, in which f0 is the proportion of new mutations in the neutral class, f1 is the proportion of
the weakly deleterious class, f2 is the proportion of the moderately deleterious class, and f3 is the proportion of the strongly deleterious/lethal
class. B Posterior estimates of the parameters of the DFE in a patient population of HCMV. Dashed lines indicate the distribution of sampled
priors, the histograms present the posterior distributions, and the red vertical lines show the point estimates defined as the weighted median.
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Data accessibility
Full simulation and summary statistic results are available on
GitHub: https://github.com/AYMoralesArce/sims_DFE_virus
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